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Layering transitions at an interface in the Blume-Cape1 model 
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Abstract. An interface in the three-dimensional Blume-Capel model is studied using 
low-temperature series and mean-field theory, By calculating the leading-order diagrams 
in the low-temperature series expansion to all orders using a transfer matrix technique, we 
are able to show that the interface wets through an infinite sequence of layering transitions 
which become quasicontinuous as the bulk phase boundary is approached. The mean-field 
approximation agrees well with the low-temperature series results. 

1. Introduction 

Much research has recently been devoted to the statistical mechanics of surfaces and 
interfaces (Pandit er a1 1982, Binder 1983, Fisher 1986). In particular, de  Olivera and 
Griffiths (1978) and Pandit er a1 (1982) used mean-field theory to show that there can 
be an  infinite sequence of first-order layering transitions when an  interface in a 
lattice-gas model unbinds from a surface. Since then it has been shown (Duxbury and  
Yeomans 1985) that low-temperature series expansions provide a powerful tool to 
analyse the layering transitions. 

Duxbury and  Yeomans (1985) used this method to show that at low temperatures 
an interface in an  Ising model on a cubic lattice, pinned to a surface by a bulk magnetic 
field, depins through an  infinite sequence of first-order layering transitions. More 
recently Armitstead er a1 (1986) showed that the wetting of an interface in a three- 
dimensional three-state chiral clock model is mediated by a similar sequence of 
transitions. In both cases the low-temperature series expansions were taken to general 
order by selecting the important graphs at each step. In this paper we apply the same 
methods to analyse wetting at an  interface in a three-dimensional Blume-Cape1 model 
(Blume 1966, Capel 1966). 

The wetting transitions in the Blume-Capel model occur in the vicinity of the bulk 
transition between states S, = *l and S, = 0. The transition line is a line of triple points 
and thus this is an instance of triple-point wetting. The general phenomenology of 
wetting near bulk triple points has been discussed by Pandit and  Fisher (1983). 
Bricmont er a1 (1986) have predicted that wetting occurs in a similar model. 

Interfacial adsorption in the two-dimensional Blume-Capel model has been studied 
by Selke and Yeomans (1983) and Selke et a /  (1984), who investigate scaling behaviour 
when close to the tricritical point using Monte Carlo methods and  scaling arguments. 
In  two-dimensional systems, however, there are no first-order layering transitions 
because the interface is always rough. 
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The outline of this paper is as follows: in $ 5  2 and 3 the model is introduced and 
its ground states are elucidated. In § 4 the results obtained from the low-temperature 
series expansion are described. The calculation is taken to general order using a 
transfer matrix method described in the appendix. The results of the mean-field 
approximation for the model are presented in 9 5 .  

I 

1 

I '  

I1 

2. The model 

We consider a lattice of spin-1 Ising spins, S, = -1,O, 1, situated on the sites i of a 
cubic lattice. The spins interact through the Blume-Capel Hamiltonian (Blume 1966, 
Capel 1966) 

2 = -Jo  E' sis, - J E'' s,s, + D E sf 
( I J )  ( V I  I 

where Jo, J and D are all positive. ( 0 )  represents a sum over nearest-neighbour pairs 
and we distinguish couplings in the axial direction, 1 1 ,  which will lie normal to the 
interface, from the two perpendicular directions, 1. 

An interface is introduced by fixing opposite ends of the system along the axial 
direction in states +1 and -1 by infinite surface fields, as shown in figure 1. Periodic 
boundary conditions are assumed in the other two directions. 

3. Ground states 

Clearly at zero temperature the spins in the layers are ferromagnetically ordered and 
the interface is smooth. To specify the ordering along the axial direction it is helpful 
to define n to be the number of layers of spin Si = 0 which appear at the interface. 
The ground-state value of n then depends on D as follows: 

( 3 . l a )  
(3.lb) 

( 3 . 1 ~ )  

O<D<fq,Jo:n=O; 1 1  . . .  1 1  -1  -1 . . .  -1 -1 

f q l Jo<D<tq ,Jo+J:n  = 1; 1 1 . . . 1 1 o -1 -1 . . , -1 -1 

fq ,Jo+J < D :  n =CO; 1 o o o . . . o o o -1 
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where q1 is the coordination number of the layers parallel to the interface ( q1 = 4 for 
the cubic lattice considered here). 

Note that at D = i q l J o +  J where the interface wets, the ground state is infinitely 
degenerate, with any state with n 3 1 having the same energy. Our aim is to study the 
phase diagram in the region close to this multiphase point (Fisher and  Selke 1980, 1981). 

(3.2) 

(3.3) 

Defining 6 as 

6 = D - ( i q 1 J 0 +  J )  

E ,  - E ,  = (1 - n ) S  

it follows immediately from (2.1) that 

where E,  is the ground-state energy per interface spin of the state with an interface 
width of n. 

4. Low-temperature series expansion 

4.1. Method 

Our aim is to perform a low-temperature series expansion about all the states stable 
at the multiphase point. By picking out the important terms at each order of the series 
expansion we can calculate which of the degenerate phases has the lowest free energy 
at finite temperatures. The argument is an inductive one with a new stable phase being 
identified at each order of the expansion. The method is described in detail in 
Armitstead et a1 (1986) and  therefore we limit ourselves here to defining the notation 
we shall need and presenting results for first, second and then general order. 

If F,, is the free energy of the state with interface width n then the reduced free 
energy per interface spin f,, is given by 

(4.1) 

where p = l /kT,  N is the number of sites on each layer and AZ,,(m, N )  is the 
contribution to the free energy from configurations obtained from the ground state by 
flipping m spins which, by the linked cluster theorem, will be linear in N. 

The free energy will be written in terms of the following Boltzmann factors: 

o = exp( -pJ,,) x = exp( - p J )  y = exp( -PO). (4.2) 

4.2. First order 

Contributions to the reduced free energy, f,, from first-order (single spin-flip) terms 
are listed in table 1 for different values of n. From (3.3), (4.1) and  table 1 one obtains 
f, -fl = ( n  - 1 ) p ~ + 2 ( x y + x ~ ' y ) + 2 ( n - 3 ) y - ( n - l ) x ' y ~ ' W ~ - + 0 ( y - ~ w ~ ~ - ~ ' ) .  (4.3) 

Table 1. One-spin-flip contributions to 1;, -f,. A hat denotes the flipped spin 

Configuration Count Boltzmann weight 

160 2 x?' + .r-'?' 

1 6 -  1 -1  2j.  

n - 2  2?' . -  060 
- 1 - 1 - 1  - ( n -  1 )  .y-y ' W ' ( L t X - J W 2 4 .  
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(4.4) 
and since we are only interested in the region close to 6 = 0 we assume 

(This assumption will be shown later to be self-consistent.) Hence to first order we 
can substitute y = X W ~ - " ~  into (4.3) to obtain 

from which it immediately follows that 

ps - o(04-/2). (4.5) 

f n - f l  = ( n - 1 ) p 8 + [ 2 ( x 2 + 1 ) + ( n  - s ) x ] w ~ ~ / ~ + o ( w ~ - - ' )  (4.6) 

fi -fl= pS + (2 - 3~ + ~ x ~ ) o " "  + O(W"- ' )  (4.7) 
f n  -fm = ( n - m ) p s + ( n - m ) ~ ~ 4 ~ / ~ + 0 ( ~ ~ - - ' )  (n,  m 2 2). (4.8) 

A given phase will become stable when its reduced free energy is the largest. So 
if we define sI2( T )  and s2=( T )  by 

(4.9) 

we find that the n = 2 phase is stable for sl2( 7') < 6 < a2,.( T )  where 
p812= - ( ~ - ~ x + ~ x ~ ) w ~ - ' ~ + ~ ( o J ~ - - ~ )  (4.10) 
ps,, = - X ~ ~ - ~ ~ + O ( ~ ~ - - ~ ) .  (4.11) 

To see this it may be helpful to look at figure 2(a)  where the free-energy differences, 

Figure 2. Schematic comparisons of the reduced free energy differences per site if,, -f,) 
plotted as functions of 8 at ( 0 )  first order and ( b )  second order of the low-temperature 
series expansion. 
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f n  - f l ,  are plotted schematically as a function of 6. Note that (4.10) and (4.11) are 
consistent with (4.5). 

So to first order we can conclude that a layering transition occurs from the n = 1 
phase to the n = 2 phase. However, to this order phases with n 3 2 remain degenerate 
along the phase boundary S2=. To break this degeneracy we need to look at higher- 
order terms in the series expansion. 

4.3. Second order 

To second order we must consider the contributions to f 2 -  f l  and f n  - f 2  from flipping 
two spins. But since qL = 4 there will also be contributions to the same power of w 
from some three and four spin-flip diagrams. All the diagrams contributing to second 
order are listed in tables 2 ( a )  and 2(b). Summing all the contributions and using 
(4.3)-(4.5) we find that 

f 2 -  f l  = ps + (2  - 3 x +  2 X 2 ) d - I ? -  (2-x+2X')psw"-: '+2(2 - 3 x 2 +  2x4)wq-- '  

+ (4+ 1 0 ~  - SX' - 18x3 -9x4 + x5 + 12x6 + 2x8)wY-  + O( m y - + ' )  (4.12) 

fn - f 2 = ( n - 2 ) p 6 + ( n - 2 ) x w q L ' 2 - 3 ( n  -2 )xp6wq- "+2 (n -2 )x2wq- - '  

+ [3 + ( n  - 1 l ) x +  (31 -?n)x '+  ( 8 n  - 2 2 ) x 3 +  ( n  + l ) x 4  - x5 ]w4-  

+O(OJq-"). (4.13) 

From (4.13) we can find f3 -f2 and f n  -fm (for n, m 3 3) and hence arrive at the 
following phase boundaries: 

psl2 = -(2 - 3~ + ~ x ' ) o ~ - "  -2 (2  - 3 x 2 + 2 x 4 ) w q - - '  - ( 8 + 2 x + 9 x 2  - 2 6 ~ '  - 5x4 

+ x S +  1 2 ~ ~ + 2 2 ) ~ ~ -   SO(^^-+^) (4.14) 

pa 23 - - -xw4_/'-2x?wq--l - (3 - 8~ +$x' +2x3 + 4 x 4  - x s ) w y _  + O(OJ~-' ') (4.15) 

ps,, = -xwY_/"2x2w4--' - ( x  - 9x2 + 8x3 + x4)w9- + O( U 4 -  - - I ) .  (4.16) 

Therefore n = 3 appears as a stable phase for SZ3 < S < S,, with the n = 2 phase 
remaining stable for < S < sZ3. Figure 2( b )  gives a schematic representation of the 
free-energy differences and the phase boundaries are shown in figure 3. 

Note that, to this order, phases with n 3 3 remain degenerate along the phase 
boundary a,,. As before, higher-order terms are needed to break this degeneracy but 
the series expansion rapidly becomes very complicated. However, we can infer that 
an  infinite sequence of layering transitions occurs through inductive arguments based 
on considering the leading term at successive orders. 

4.4. General order 

Suppose that after considering the ( n - 1 ) t h  order of the expansion all phases with 
interface width d n are found to be stable and  non-degenerate in particular regions 
of the phase diagram and that all phases with interface width 3 n are degenerate along 
the phase boundary S,,x (cf § 4.2 and 4.3 where n = 2 and 3, respectively). 

In order to break this degeneracy we need to look at the leading-order contribution 
to the free-energy difference between phases n' and n, where n ' >  n. This will arise at 
the nth order of the expansion. Some thought shows that the important graphs will 
be axial chains of n flipped spins that span the interface, together with their associated 
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Table 2. Graphs which need to be considered to obtain the second order contribution:o 
( a )  f2 -1, and ( b )  J ,  -f2. The notation used to define the flipped configurations is a :  100, 
b:080, c :  -1 - i - 1, d :  16- 1, e :  110. 

Configuration Count Boltzmann weight 

In-layer connected 

aa 

dd 
aaa 

ddd 

cccc forming square 
dddd 

Axially connected 

e, a 
a, a 
e, d 

spin flips 

cc 

ccc 

aaaa 1 
spin flips 

c, c 

Separated spin flips 
a; e 
a; a 
d;  e 
d;  d 
c; c 

2 
1 
- 2  
-1  

i b )  

Configuration Count Boltzmann weight 

- 
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Figure 3. Phase diagram for the layering transitions in the Blume-Capel model. The full 
curves are the phase boundaries obtained from the low-temperature series expansion taken 
to second order. The broken curves are those found from the mean-field approximation. 
In both cases we have taken Jo = J.  

decompositions (Fisher and Selke 1981). (It  is perhaps intuitively obvious that these 
will be the first fluctuations to differentiate between the phases n and n + 1 ;  a simpler 
model which behaves in the same way is described in Duxbury and Yeomans (1989.)  
Other diagrams will contribute to f n .  -fn to leading order (for example connected and 
disconnected configurations of n flipped spins running in the layers) but these shift 
the boundaries 6n.n+l and by the same amount and hence drop out when the 
phase width of the n + 1 phase 

A a n + I =  6,,,+1- 6n+,,m = -P-l[(f:?l -fAn)) (4.17) 

(4.18) 

is calculated. The superscript on f denotes the number of flipped spins. 
Because of the one-dimensional nature of the graphs corresponding to axial chains 

of flipped spins, the corresponding Boltzmann factor can be evaluated using a transfer 
matrix method, the details of which are described in the appendix, to give 

- ( f L f l )  -j-,$))/ (n '  - m')]  n', m' 3 n + 1 

f$Jl -1:) = f x - ' (  1 - x)  n + l [  ( 1  + x )  n + l -  ( 1  - x)  " + 1 I U  n q , / *  

+ x ( l  -x)"-'[2(1 - X ) n - l  - l]w"4~/*+O(W(n+3)q_/2 ) (4.19) 
S(')-fzn.'=(nf-ml)x(l -x)n-'[2(1 - X ) n - l -  l]Un4-/2 

+ 0 ( ~ ( n + 3 ) q _ / 2  1 n', m's n + 1 .  (4.20) 
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The tilde on f is used to emphasise that only axial chains are included as opposed to 
all configurations of n flipped spins. 

PAS,, , ,  = - 2 ~  1 - 1  ( 1  - x)"+'[(  1 + x)"+ '  - (1 - X ) " + I ] " ~ - ' ~ +  O ( W ~ ~ - " + '  ) (4.21) 

showing that the n + 1 phase has a finite phase width and is stabilised at  the nth order 
of the expansion. From (4.20) phases of width Z n  + 1 remain degenerate on S, ,+ l ,x  
to this order. Hence, by an  inductive argument, considering each order of the series 
expansion in turn, an  infinite series of layering transitions can be established. The 
factor w " ~ - ' ~  in (4.21) shows that the phase widths decrease exponentially with increas- 
ing n, so that the layering transitions effectively become quasicontinuous as n + W. 

It follows immediately from (4.17)-(4.20) that 

4.5. Low-temperature bulk phase boundary 

It is of interest to compare the position of the phase boundary in a system with no 
interface to those obtained for the interface transitions. Expanding around a ground 
state with S, = 1 for all i one obtains a reduced free energy 

f n  = -PS(  1 - + 2x'oY--'+ ( x  -;X'S 6x3 + x 4 ) w q -  + O(wY-+') (4.22) 

whereas an  expansion around the state with S,  = 0 for all i gives 

f p  = ~ x w ' - ' ~ (  1 - P S )  +4xZwy-- '  + (2x - 14x2+ 1 4 ~ '  +2x4)wq- + O(wy-+I) .  (4.23) 

Equating (4.22) and (4.23) gives a bulk phase boundary 

pij aci = - ~ w ~ - ~ ~ - ~ x ~ ~ ~ - ~ ' - ( x - ~ x ~ + ~ x ~ + x ~ ) ~ ~ ~ + ~ ( w ~ ~ ~ ~ )  (4.24) 

which coincides with the interface boundary S3=.  Indeed, this is what we would expect 
at this order as indicated in the next section. 

4.6. Domain wall interaction free energy 

Some insight into the nature of the layering transitions is gained by considering the 
contribution to the free energy of the state n due  to the interaction between the domain 
walls ( . . . 1 1 0 0 . . . and . . . 0 0 -1 -1 . . .). This can be expressed to leading order as 

(4.25) 

Subtracting f;"' and taking n ' +  CC removes the contributions to the free energy 
from isolated domain walls. The leading-order surviving terms in F d , ( n )  are again 
those occurring from flipping axial chains of n spins. (4.25) is easily evaluated using 
results derived in the appendix to yield 

F , , ( n )  = -AS,,+,. (4.26) 

Comparing with (4.21) we see that Fd,(n) is always positive and  decreases 
monotonically ( - wnY-l2 ) with n, and is therefore repulsive at all distances. This is an  
example of entropic repulsion (Bricmont et al 1986) where the domain walls want to 
move further apart so as to have more freedom to fluctuate. 

We can now argue that complete wetting occurs at the bulk phase boundary. As 
S (  T )  approaches Sap(  T )  from below, repulsion between the domain walls increases 
the value of n. But because there is a bulk term in the free energy favouring S, = *l 

Fdu( n )  = - kT lim { f A n i  - f A''' - ( n ' -  n ) [  f t ; " '  - f b " ' ] } .  
n -1 
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spins, equilibrium must correspond to the domain walls being at  a finite separation. 
Only at 6 (  T )  = LjaO( T ) ,  when the bulk free energies of the Si = * 1  and S,  = 0 states 
become equal, can the domain walls wet the interface completely. This agrees with 
the result found by Bricmont et a1 (1986). 

5. Mean-field theory 

We now compare our results to those obtained using the mean-field approximation. 
The mean-field equations follow as usual from a variational principle (Blume et al 
1971) except that the lack of translational invariance means that the mean field, h,, 
on a given layer, j ,  must be allowed to vary with j .  The expectation value of the spin 
in layer j with respect to the mean-field Hamiltonian, (S,), is then 

where 

h, = 450( ' J  ) + (( ' J  f 1 ) + ('1 - 1 )) 

and the mean-field free energy per spin, F,, ,  is given by 
L 

F,,= L-' {-kTln(2  cosh ,BhJ+ePD)+D+~hf (Sf )}  
, = I  

(5.2) 

(5.3) 

where L is the number of layers. 
These equations were solved for phases with various values of n by numerical 

iteration of equations (5.1) and  (5.2). The mean-field phase diagram was then construc- 
ted by comparing F,, for the different phases. The resulting phase boundaries are 
shown by the broken curves in figure 3 .  We were able to find stable phases with n 51 7 
although for clarity only phases with n S 4 are shown in figure 3. Note the close 
qualitative similarity to the results obtained from the low-temperature series expansion. 

6. Summary 

We have shown that an  interface in the Blume-Capel model wets from a state with a 
single layer of zeros at the interface through an  infinite sequence of first-order layering 
transitions at each of which the number of zero layers increases by one. The phase 
widths decrease exponentially as the number of zero layers increases. This process is 
a result of competition between the entropic repulsive interaction between the 1 0  and  
0 -1 domain walls and the effects of the bulk transition from the phase where all S, = 1 
(or all S, = -1) to the phase where all S, = 0. It is therefore an example of triple-point 
wetting. The results of a mean-field approximation agree qualitatively with the low- 
temperature series results. 
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Appendix. Calculation to general order using a transfer matrix method 

We require the contribution to the reduced free energies from axial chains of n flipped 
spins and their associated decompositions. For this we use a transfer matrix method 
which was first developed by Yeomans and Fisher (1984) and whose application to 
interface problems has been described by Armitstead et al (1986). 

The method relies on sequentially building up the contribution to the free energy, 
bond by bond, using a transfer matrix to record the Boltzmann weights for each broken 
bond in turn. For example, if the initial configuration is a . . . 0 0 . . . bond, both spins 
must flip giving a total of four final states whose Boltzmann weights are recorded in 
the matrix 

second spin 
-1 1 

We must also include contributions due to the flipped spins being separated. This 
gives a factor of -1 in addition to the Boltzmann weights (Yeomans and Fisher 1984): 

second spin 
-1 1 

Therefore the total transfer matrix is 

A *  . . .  0 0  . . .  

Similarly, for a . . . 1 1 . . . bond we have the following transfer matrix: 

A A  . . .  1 1  . .  (A2) 
x( 1 - x)y-lwq- x( 1 - x2)w2qa 
x( 1 - X')y-W- (1 - X4)w'qL 

D = (  

There must also be contributions from the bond preceding the first flipped spin 
(initial bond) and the bond following the last flipped spin (final bond). These are 
given by row and column vectors, respectively. We obtain the following row vectors 
for the indicated initial bonds: 

1 6  . I .  bT=(x x - ' ) y  (A3) 

0 6  . . .  cT=(l 1)y (A4) 

l i  . . .  dT= (xy-'wqi x2w2q~)  (A51 
and the following column vectors for the final bonds: 

A br= (':I) . . .  0-1  

. . .  6 0  cr= (:) 
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Recall that we seek to calculate F!)-i(!' (see § 4.4). The following configurations 
contribute to this free-energy difference: 

Configuration A A. .  Count Weight 
. . .  1 0 0  . . .  0 0 - 1  . . .  -1 bFB"-'b, 
. . .  1 6 6  . . .  6 6 0  . . .  2 bFBn-'cf 
. . .  0 6 6  . . .  6 6 0  . . .  n ' -  n - 1 cTB"- 'c~ 
. . .  1 1 1  . . .  1 1 1  . . .  - ( n ' -  n )  dTD"-'dp 

* A  A A  

Hence 

F,7'-fy' = bTBfl- '(2~,-  b,) + ( n ' -  n - l ) C ~ B " - ' c , -  ( n ' -  n)dTD"-'df. (A91 

To evaluate (A9) we diagonalise B. Its eigenvalues A I ,  A 2  and corresponding 

(A101 

eigenvectors U', u2 are 

A I  = (x- '  - X)Y A 2  = (x- '  - X  - 2)y 

from which it follows immediately that 

D"-' can easily be evaluated to leading order: 

o(y2-"w 'qA'i. (A131 i (1 + x ) [ x ( l  - x ) y - ' w q - ] n - ' + O ( y 2 - n w n q - )  0(yZ-"w"~- )  
~ ~ ( 1  - x ) y - i w q - ] n - i + ~ ( y 2 - n w n 4 ~  ) Dn-1 = 

Finally, substituting (A3)-(A8), (AlO), (A12) and  (A13) into (A9) and putting 
y = X W ~ - ' ~  yields 
7 , )  -i(;) = tx-'( 1 - x)  " + I [  (1 + x )  n + ' -  (1  - x) " + ' I W Y ' 2  

1. (A141 + ( n ' - n ) x ( l  -x)"-'[2(1 - X ) n - '  -1]Wnq~/*+O(w("+3'q_/2 

(4.19) and  (4.20) follow immediately from (A14). 
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